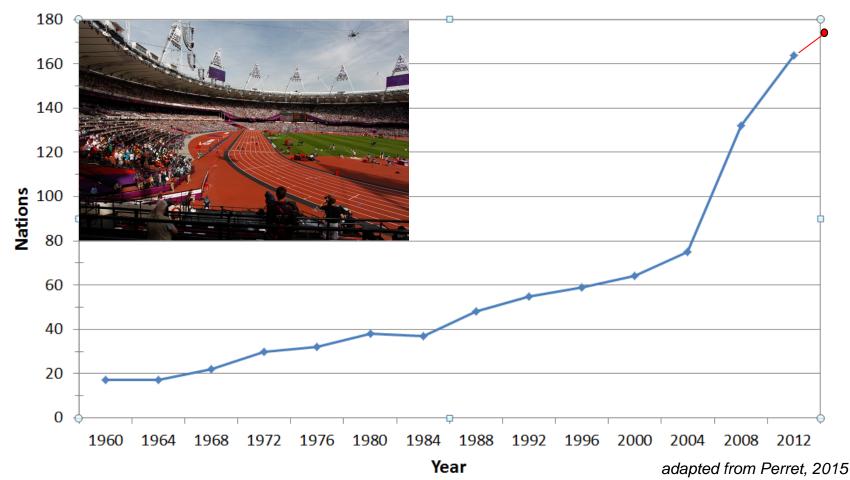
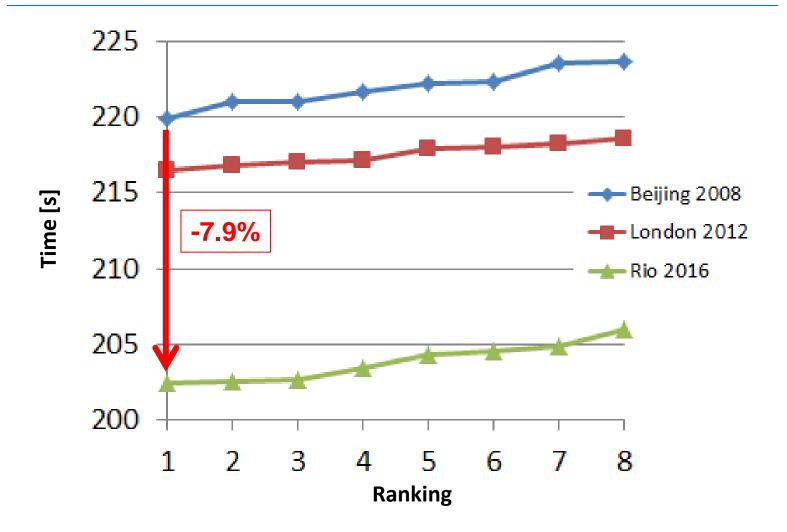


VISTA 2019

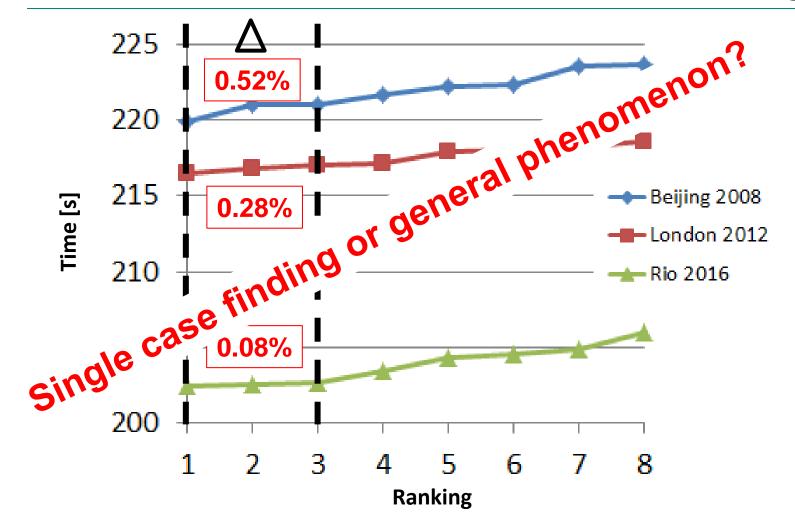
Citius, altius, fortius? A 10 year analysis of women's T54 wheelchair athletics performance developement


Claudio Perret, PhD Institute of Sports Medicine Swiss Paraplegic Centre Nottwil

Amsterdam, 6th of September 2019


Increasing interest in Paralympic sports

Nations at Paralympic Summer Games

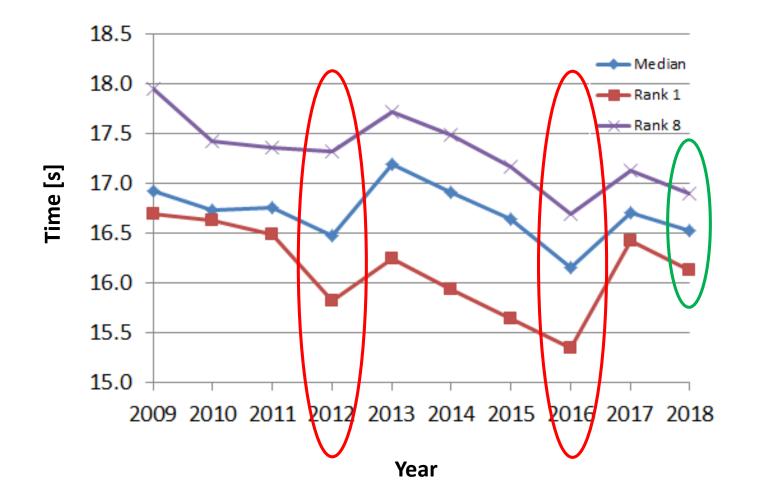


Women T54 finals 2008-2016 finish times

Women T54 finals 2008-2016 medal ranking

Aim of the study

 To analyse performance developments for all of the women's T54 track events (from 100m to 5000m) over the past decade based on world rankings

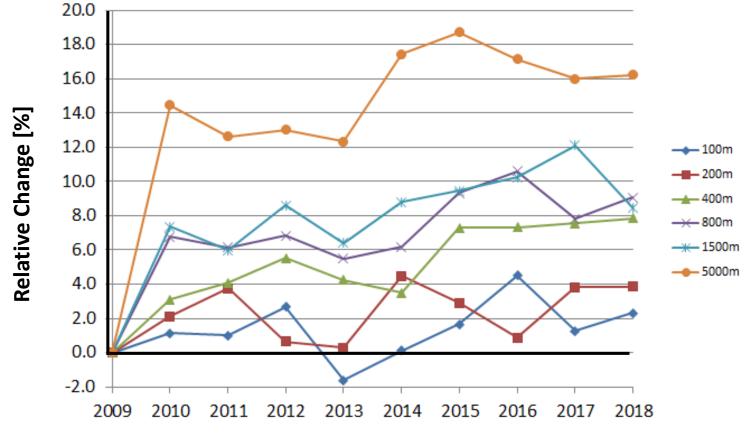

Methods

- World ranking data from 2009 to 2018 (<u>https://www.paralympic.org/athletics/rankings</u>)
- Calculations based on top 8 athletes
- Descriptive statistics

World ranking results 100m

Fastests times [s] during Paralympic cycle

Year	100m	200m	400m	800m	1500m	5000m
2009	16.93	31.03	59.34	118.16	226.22	818.11
2010	16.74	30.37	57.49	110.16	209.59	699.79
2011	16.76	29.86	56.92	110.89	212.67	714.82
2012	16.47	30.82	56.06	110.09	206.77	711.44
2013	17.20	30.94	56.81	111.68	211.71	717.29
2014	16.91	29.64	57.26	110.84	206.32	675.41
2015	16.65	30.12	55.01	107.13	204.87	664.97
2016	16.16	30.75	55.00	105.62	203.07	677.77
2017	16.71	29.84	54.85	108.91	198.81	687.14
2018	16.53	29.83	54.68	107.44	207.02	685.25



Slowest and **fastest** median times [s]

Year	100m	200m	400m	800m	1500m	5000m
2009	16.93	31.03	59.34	118.16	226.22	818.11
2010	16.74	30.37	57.49	110.16	209.59	699.79
2011	16.76	29.86	56.92	110.89	212.67	714.82
2012	16.47	30.82	56.06	110.09	206.77	711.44
2013	17.20	30.94	56.81	111.68	211.71	717.29
2014	16.91	29.64	57.26	110.84	206.32	675.41
2015	16.65	30.12	55.01	107.13	204.87	664.97
2016	16.16	30.75	55.00	105.62	203.07	677.77
2017	16.71	29.84	54.85	108.91	198.81	687.14
2018	16.53	29.83	54.68	107.44	207.02	685.25

Relative development since 2009 (baseline)

Year

Conclusion

 Higher increase of long distance race performance compared to sprint performance over the last decade

\rightarrow Increasing popularity of e.g. marathons?

Peak performance mainly during Paralympic years

 \rightarrow Athlete's focus and peaking?

Times of top athletes move closer together

 \rightarrow Competitions become more exciting

• Faster times at Tokyo 2020 can be expected

Thank you for your attention!

